0 CpxTRS
↳1 TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID), 0 ms)
↳2 CpxWeightedTrs
↳3 TypeInferenceProof (BOTH BOUNDS(ID, ID), 3 ms)
↳4 CpxTypedWeightedTrs
↳5 CompletionProof (UPPER BOUND(ID), 0 ms)
↳6 CpxTypedWeightedCompleteTrs
↳7 NarrowingProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 CpxTypedWeightedCompleteTrs
↳9 CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID), 0 ms)
↳10 CpxRNTS
↳11 SimplificationProof (BOTH BOUNDS(ID, ID), 0 ms)
↳12 CpxRNTS
↳13 CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 CpxRNTS
↳15 IntTrsBoundProof (UPPER BOUND(ID), 570 ms)
↳16 CpxRNTS
↳17 IntTrsBoundProof (UPPER BOUND(ID), 124 ms)
↳18 CpxRNTS
↳19 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳20 CpxRNTS
↳21 IntTrsBoundProof (UPPER BOUND(ID), 145 ms)
↳22 CpxRNTS
↳23 IntTrsBoundProof (UPPER BOUND(ID), 6 ms)
↳24 CpxRNTS
↳25 FinalProof (⇔, 0 ms)
↳26 BOUNDS(1, n^1)
p(s(x)) → x
fac(0) → s(0)
fac(s(x)) → times(s(x), fac(p(s(x))))
p(s(x)) → x [1]
fac(0) → s(0) [1]
fac(s(x)) → times(s(x), fac(p(s(x)))) [1]
p(s(x)) → x [1]
fac(0) → s(0) [1]
fac(s(x)) → times(s(x), fac(p(s(x)))) [1]
p :: s:0:times → s:0:times s :: s:0:times → s:0:times fac :: s:0:times → s:0:times 0 :: s:0:times times :: s:0:times → s:0:times → s:0:times |
(a) The obligation is a constructor system where every type has a constant constructor,
(b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols:
fac
p
p(v0) → 0 [0]
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
0 => 0
fac(z) -{ 1 }→ 1 + 0 :|: z = 0
fac(z) -{ 2 }→ 1 + (1 + x) + fac(x) :|: x >= 0, z = 1 + x
fac(z) -{ 1 }→ 1 + (1 + x) + fac(0) :|: x >= 0, z = 1 + x
p(z) -{ 1 }→ x :|: x >= 0, z = 1 + x
p(z) -{ 0 }→ 0 :|: v0 >= 0, z = v0
fac(z) -{ 1 }→ 1 + 0 :|: z = 0
fac(z) -{ 1 }→ 1 + (1 + (z - 1)) + fac(0) :|: z - 1 >= 0
fac(z) -{ 2 }→ 1 + (1 + (z - 1)) + fac(z - 1) :|: z - 1 >= 0
p(z) -{ 0 }→ 0 :|: z >= 0
p(z) -{ 1 }→ z - 1 :|: z - 1 >= 0
{ fac } { p } |
fac(z) -{ 1 }→ 1 + 0 :|: z = 0
fac(z) -{ 1 }→ 1 + (1 + (z - 1)) + fac(0) :|: z - 1 >= 0
fac(z) -{ 2 }→ 1 + (1 + (z - 1)) + fac(z - 1) :|: z - 1 >= 0
p(z) -{ 0 }→ 0 :|: z >= 0
p(z) -{ 1 }→ z - 1 :|: z - 1 >= 0
fac(z) -{ 1 }→ 1 + 0 :|: z = 0
fac(z) -{ 1 }→ 1 + (1 + (z - 1)) + fac(0) :|: z - 1 >= 0
fac(z) -{ 2 }→ 1 + (1 + (z - 1)) + fac(z - 1) :|: z - 1 >= 0
p(z) -{ 0 }→ 0 :|: z >= 0
p(z) -{ 1 }→ z - 1 :|: z - 1 >= 0
fac: runtime: ?, size: O(n2) [1 + z + z2] |
fac(z) -{ 1 }→ 1 + 0 :|: z = 0
fac(z) -{ 1 }→ 1 + (1 + (z - 1)) + fac(0) :|: z - 1 >= 0
fac(z) -{ 2 }→ 1 + (1 + (z - 1)) + fac(z - 1) :|: z - 1 >= 0
p(z) -{ 0 }→ 0 :|: z >= 0
p(z) -{ 1 }→ z - 1 :|: z - 1 >= 0
fac: runtime: O(n1) [1 + 2·z], size: O(n2) [1 + z + z2] |
fac(z) -{ 1 }→ 1 + 0 :|: z = 0
fac(z) -{ 1 + 2·z }→ 1 + (1 + (z - 1)) + s :|: s >= 0, s <= 1 + 1 * (z - 1) + 1 * ((z - 1) * (z - 1)), z - 1 >= 0
fac(z) -{ 2 }→ 1 + (1 + (z - 1)) + s' :|: s' >= 0, s' <= 1 + 1 * 0 + 1 * (0 * 0), z - 1 >= 0
p(z) -{ 0 }→ 0 :|: z >= 0
p(z) -{ 1 }→ z - 1 :|: z - 1 >= 0
fac: runtime: O(n1) [1 + 2·z], size: O(n2) [1 + z + z2] |
fac(z) -{ 1 }→ 1 + 0 :|: z = 0
fac(z) -{ 1 + 2·z }→ 1 + (1 + (z - 1)) + s :|: s >= 0, s <= 1 + 1 * (z - 1) + 1 * ((z - 1) * (z - 1)), z - 1 >= 0
fac(z) -{ 2 }→ 1 + (1 + (z - 1)) + s' :|: s' >= 0, s' <= 1 + 1 * 0 + 1 * (0 * 0), z - 1 >= 0
p(z) -{ 0 }→ 0 :|: z >= 0
p(z) -{ 1 }→ z - 1 :|: z - 1 >= 0
fac: runtime: O(n1) [1 + 2·z], size: O(n2) [1 + z + z2] p: runtime: ?, size: O(n1) [z] |
fac(z) -{ 1 }→ 1 + 0 :|: z = 0
fac(z) -{ 1 + 2·z }→ 1 + (1 + (z - 1)) + s :|: s >= 0, s <= 1 + 1 * (z - 1) + 1 * ((z - 1) * (z - 1)), z - 1 >= 0
fac(z) -{ 2 }→ 1 + (1 + (z - 1)) + s' :|: s' >= 0, s' <= 1 + 1 * 0 + 1 * (0 * 0), z - 1 >= 0
p(z) -{ 0 }→ 0 :|: z >= 0
p(z) -{ 1 }→ z - 1 :|: z - 1 >= 0
fac: runtime: O(n1) [1 + 2·z], size: O(n2) [1 + z + z2] p: runtime: O(1) [1], size: O(n1) [z] |